skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chang, Chih‐Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research investigates the optical anisotropy and structure-induced birefringence in low-index nanolattices. By designing the unit-cell geometry using 3-dimentional (3D) colloidal lithography, nanolattices can exhibit different refractive indices along orthogonal directions due to the structure geometry. The out-of-plane and in-plane indices are characterized using spectroscopic ellipsometry and agree well with the anisotropic Cauchy material model. Exhibit positive-uniaxial birefringence, the nanolattices can have up to Δn = 0.003 for nanolattices with low indices that range from 1.04 to 1.12. The birefringence is modeled using the finite-difference-time-domain (FDTD) method, where the reflectance of an anisotropic film is calculated to iteratively solve for the indices. The theoretical model and experimental data indicate that the birefringence can be controlled by the unit-cell geometry based on the relative length scale of the particle diameter to the exposure wavelength. This work demonstrates that it is possible to precisely design optical birefringence in 3D nanolattices, which can find applications in polarizing optics, nanophotonics, and wearable electronics. 
    more » « less
  2. Although there has been significant interest in the novel material properties of bio-inspired nanostructures, engineering them to become mechanically durable remains a significant challenge. This work demonstrates the fabrication of sapphire nanostructures with anti-glare, anti-fogging, anti-dust and scratch-resistant properties. The fabricated nanostructures demonstrated a period of 330 nm and an aspect ratio of 2.1, the highest reported for sapphire thus far. The nanostructured sapphire sample exhibited broadband and omnidirectional antireflection properties, with an enhanced transmission of up to 95.8% at a wavelength of 1360 nm. The sapphire nanostructures also exhibited enhanced wetting performance and could mitigate fogging from water condensation or repel water droplets. Furthermore, owing to their sharp features, the fabricated structures could prevent particulate adhesion and maintain a 98.7% dust-free surface area solely using gravity. Furthermore, nanoindentation and scratch tests indicated that the sapphire nanostructures have an indentation modulus and hardness of 182 GPa and 3.7 GPa, respectively, which are similar to those of bulk glass and scratch-resistant metals such as tungsten. These sapphire nanostructures can be fabricated using high-throughput nanomanufacturing techniques and can find applications in scratch-resistant optics for photonics, electronic displays, and protective windows. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  3. Nanostructured materials and nanolattices with high porosity can have novel optical and mechanical properties that are attractive for nanophotonic devices. One existing challenge is the integration of microstructures that can be used as waveguides or electrodes on such nanostructures without filling in the pores. This study investigates the fabrication of TiO2 microstructures on nanolattices using a stencil mask. In this approach, the nanostructures are planarized with a polymer film while the microstructures are patterned in a sequential shadow deposition step. Our results demonstrate the successful fabrication of a “dog-bone” microstructure with 400 μm length, 100 μm width, and 30–560 nm thicknesses on nanostructure with 390 and 500 nm period. The experimental results show that cracks can form in the microstructures, which can be attributed to residual stress and the thermal annealing cycle. A key finding is that the film cracks decrease as the TiO2 layer becomes thinner, highlighting an important relationship between grain size distribution and the film thickness. The mechanical stability of the underlying nanolattices also plays a key role, where interconnected architecture mitigated the crack formation when compared with isolated structures. The demonstrated fabrication process can lead to integrated waveguides and microelectrodes on nanolattices, which can find applications for next-generation photonic and electronic devices. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. Abstract Sapphire is an attractive material that stands to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating sapphire nanostructures by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach a femtosecond laser pulse is focused on the substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy. The irradiated regions are removed using a subsequent hydrofluoric acid etch. Laser confocal measurements quantify the degree of selective etching. The results indicate a threshold laser pulse intensity required for selective etching. This process was used to fabricate hierarchical sapphire nanostructures over large areas with enhanced hydrophobicity, with an apparent contact angle of 140 degrees, and a high roll-off angle, characteristic of the rose petal effect. Additionally, the structures have high broadband diffuse transmittance of up to 81.8% with low loss, with applications in optical diffusers. Our findings provide new insights into the interplay between the light-matter interactions, where Raman shifts associated with different vibrational modes can predict selective etching. These results advance sapphire nanostructure fabrication, with applications in infrared optics, protective windows, and consumer electronics. 
    more » « less
  5. Liddle, J Alexander; Ruiz, Ricardo (Ed.)
  6. Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λoof 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation. 
    more » « less
  7. In this work, we investigate the anelastic deformation behavior of periodic three-dimensional (3D) nanolattices with extremely thin shell thicknesses using nanoindentation. The results show that the nanolattice continues to deform with time under a constant load. In the case of 30-nm-thick aluminum oxide nanolattices, the anelastic deformation accounts for up to 18.1% of the elastic deformation for a constant load of 500 μN. The nanolattices also exhibit up to 15.7% recovery after unloading. Finite element analysis (FEA) coupled with diffusion of point defects is conducted, which is in qualitative agreement with the experimental results. The anelastic behavior can be attributed to the diffusion of point defects in the presence of a stress gradient and is reversible when the deformation is removed. The FEA model quantifies the evolution of the stress gradient and defect concentration and demonstrates the important role of a wavy tube profile in the diffusion of point defects. The reported anelastic deformation behavior can shed light on time-dependent response of nanolattice materials with implication for energy dissipation applications. 
    more » « less